
Vista Entertainment Solutions
2022-03-15

HOWTO GUIDE
CUSTOMISING THE KIOSK
SKIN
Vista Cloud

Copyright notice
Copyright © 1996-2022 Vista Entertainment Solutions Ltd.
All rights reserved.

Trade Secret Information of Vista Entertainment Solutions Ltd, 1996-2022. This program is protected by
licensed terms applicable to New Zealand and International copyright laws.

The software contains proprietary information of Vista Entertainment Solutions Ltd; it is provided under a
license agreement, which must be entered with Vista Entertainment Solutions Ltd, containing restrictions on
use and disclosure and is also protected by copyright law. Reverse engineering of the software is prohibited.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording or otherwise without the prior written permission
of Vista Entertainment Solutions Ltd.

Microsoft Word, Microsoft Office, Windows®, Windows95™, Windows98™, Windows2000™, Windows2003™,
WindowsXP™, Windows NT®, Windows Vista™, Windows 7™, Windows 8™, and Windows 10™ are trademarks
of Microsoft Corporation.

Vista Entertainment Solutions Limited

PO Box 90551, Victoria Street West, Auckland 1124, New Zealand

P: +64 9 984 4570 F: + 64 9 379 0685 www.vista.co

CONTENTS 3

Contents
Copyright notice __ 2

Customising colours ___ 5

Customising fonts ___ 5

Customising templates ___ 6

Customising control styles __ 9

Customising value converters __ 11

Converters - reference information __ 12

Increasing and decreasing the visual scale of Kiosk ___ 13

Customising the idle screen when Kiosk is scaled down __ 13

Positioning the sections of the Kiosk skin ___ 14

Customising the text field size for card numbers ___ 14

Customising your Loyalty card swipe image ___ 15

Index __ 18

CUSTOMISING COLOURS 5

Kiosk supports the customisation of colours, fonts, templates, and control styles.

The following sections provide high-level guidance for the steps involved, and describe functions that can
support the creation of a custom theme. Vista recommends that you familiarise yourself with XAML concepts
before attempting to alter the look and feel of the application.

Customisation does not require all files or values to be provided. Partial file and value provision is supported.
For example, if the file Colors.xaml is copied to the folder \User, and only the background colour needs
to be changed, then the other values can be safely deleted. The same is true for templates and control styles,
as the system has a fallback default theme that is used when no customised value has been provided.

In all cases, Kiosk must be restarted for the changes to take effect.

Notes:

 The default styles and templates in Kiosk are designed to work primarily with its custom controls and
models. To ensure that application settings are honoured (for example, those defined in the Kiosk.ini file),
use the custom converters and visualisation models provided by the Kiosk API in preference to other tools.

 Vista recommends that you copy only the files that you want to customise (not every file) from
VistaNew/Base to VistaNew/User.

Customising colours
1. Locate the file Colors.xaml in the Kiosk workstation folder:

ProgramData\Vista\VistaKiosk\Config\Skins\Type1\VistaNew\Base.

2. Save a copy of the file in the folder \User.

Note: Vista recommends that you copy only the files that you want to customise (not every file) from
VistaNew/Base to VistaNew/User.

3. Open the file and locate the element you want to edit.

For example: The default background colour for the application:

<SolidColorBrush x:Key="MainBackgroundBrush" Color="#FF2B2725"/>

4. Replace the Color value with the desired colour name or hexadecimal value.

For example:

<!-- the color is now Dodger Blue -->
<SolidColorBrush x:Key="MainBackgroundBrush" Color="#FF1E90FF"/>

Microsoft provides colour swatches for common colours at
http://msdn.microsoft.com/en-us/library/system.windows.media.colors(v=vs.110).aspx.

Customising fonts
1. Locate the file Fonts.xaml in the Kiosk workstation folder:

ProgramData\Vista\VistaKiosk\Config\Skins\Type1\VistaNew\Base.

2. Save a copy of the file in the folder \User.

Overview

CUSTOMISING TEMPLATES 6

Note: Vista recommends that you copy only the files that you want to customise (not every file) from
VistaNew/Base to VistaNew/User.

3. Open the file and locate the element you want to edit.

For example: The default font family for the application:

<!-- the font family used for all text elements -->
<Style x:Key="RegularFontStyle" TargetType="{x:Type IFrameworkInputElement}">
 <Setter Property="TextElement.FontFamily" Value="Segoe UI"/>
</Style>

4. Replace the Font value with the name of any font installed on the system.

For example:

<Setter Property="TextElement.FontFamily" Value="Tahoma"/>

Customising templates
The template files found in the Kiosk workstation folder
ProgramData\Vista\VistaKiosk\Config\Skins\Type1\VistaNew\Base\Templates
support the customisation of visual elements used by the views and tile templates hosted in the carousel
control.

A view is an area of the screen dedicated to presenting the user interface for a specific function. For example:
film selection, language selection, and location selection are all views. The names of the XAML files in the
folder Templates correspond to the views they support.

To customise a template, locate the required file in the folder \Base\Templates, and save a copy of it in
the folder \User\Templates for editing.

Note: Vista recommends that you copy only the files that you want to customise (not every file) from
VistaNew/Base to VistaNew/User.

The number of tiles presented in the carousel is managed via the tile template size. The tile size is used to
calculate the number of pages required to present the items. Therefore, it is important to understand the
carousel control layout, and how to calculate sizes that will provide the desired layout.

Note: If the default carousel control layout is customised, the tile templates hosted in each view may also need
to be altered.

For layouts that will display more tiles than can be presented on a single page, the tile size calculations are
based on a carousel control state where both the ‘previous’ and ‘next’ buttons are visible.

CUSTOMISING TEMPLATES 7

The default carousel control layout is defined as follows:

For the purpose of calculating tile dimensions, the area of interest is the tile container.

For tile layouts that require multiple pages, the tile layout should be based on the number of tiles of equal size
that can fit into a single page hosted in an area that measures as 566px x 904px.

If the carousel will only present a single page of tiles, then the tile container area measures 566px x 992px (the
container control border is 1px thick).

Tile templates should be defined as having a left and top margin value, with a right and bottom margin value of
zero. The following wireframe layout represents the default film tile template in the pick film view carousel.

To calculate the tile dimensions:

CUSTOMISING TEMPLATES 8

1. Decide on the top margin value that should separate the tiles on the vertical axis, and multiply this value by
the number of rows + 1 row. Subtract the result from 566, and divide the remainder by the number of
rows required. This will give you the tile height.

2. Decide on the left margin value that should separate the tiles on the horizontal axis, and multiply this value
by the number of tiles that should appear in a row + 1 tile. Subtract the result from 904, and divide the
remainder by the number of required tiles in the row. This will give you the tile width.

Example calculation for six tiles presented as two rows of three

The required number of tiles is six, presented as two rows with three tiles in each row, where the top and left
margin values are both 10px. This can be visualised as follows:

Calculation

Total vertical margin height: 10px * 3 = 30px (the top margin (10px) times the number of required rows (2) plus
one).

Available tile container height: 566px – 30px = 536px (the tile container height minus the total vertical margin
height).

Individual tile height: 536px / 2 = 268px (the available tile container height divided by the number of rows
required).

Total horizontal margin width: 10px * 4 = 40px (the left margin (10px) times the number of required tiles in a
row (3) plus one).

Available tile container width: 904px – 40px = 864px (the tile container width minus the total horizontal margin
width).

Individual tile width: 864px / 3 = 288px (the available tile container width divided by the number of tiles
required in a single row).

Final tile dimensions: left margin: 10px, top margin: 10px, height: 268px, width: 288px.

In XAML this example would be expressed as follows:

<Style x:Key="PickFilmTileStyle" TargetType="{x:Type Grid}">
 <Setter Property="Height" Value="268"/>
 <Setter Property="Margin" Value="10,10,0,0"/>
 <Setter Property="Width" Value="288"/>
</Style>

CUSTOMISING CONTROL STYLES 9

Example calculation for two tiles presented as one row of two

The number of required tiles is two, presented as one row with two tiles, where the top and left margin values
are both 10px. This can be visualised as follows:

Calculation

Total vertical margin height: 10px * 2 = 20px (the top margin (10px) times the number of required rows (1) plus
one).

Available tile container height: 566px – 20px = 546px (the tile container height minus the total vertical margin
height).

Individual tile height: 546px / 1 = 546px (the available tile container height divided by the number of rows
required).

Total horizontal margin width: 10px * 3 = 30px (the left margin (10px) times the number of required tiles in a
row (2) plus one).

Available tile container width: 904px – 30px = 874px (the tile container width minus the total horizontal margin
width).

Individual tile width: 874px / 2 = 437px (the available tile container width divided by the number of tiles
required in a single row).

Final tile dimensions: left margin: 10px, top margin: 10px, height: 546px, width: 437px.

In XAML, this example would be expressed as follows:

<Style x:Key="PickFilmTileStyle" TargetType="{x:Type Grid}">
 <Setter Property="Height" Value="546"/>
 <Setter Property="Margin" Value="10,10,0,0"/>
 <Setter Property="Width" Value="437"/>
</Style>

Customising control styles
Important: Manipulation of control templates is considered an advanced area of customisation and should not
normally be required. Refer to online resources that describe custom controls and control templates before
altering the default definitions.

Example customisation of the Kiosk banner

In this example, we will manipulate the Kiosk banner control template so that the logo is moved to the right
and placed next to the language selector, while the current date and time are moved to the far left.

CUSTOMISING CONTROL STYLES 10

By default, the Kiosk banner looks like this:

For brevity, only the elements of the template that are to be manipulated are reproduced here.

<vkv:AdminModeButton Grid.Column="0" Grid.ColumnSpan="4"
 IconImageSource="{TemplateBinding BannerImageSource}"
 Style="{StaticResource AdminModeButtonStyle}"
 Stylus.IsPressAndHoldEnabled="False"/>
<StackPanel Grid.Column="2">
 <TextBlock
 FontSize="25"
 Foreground="{TemplateBinding Foreground}"
 Text="{TemplateBinding CurrentTime}"
 HorizontalAlignment="Right"/>
 <TextBlock
 Foreground="{TemplateBinding Foreground}"
 FontSize="15"
 HorizontalAlignment="Right"
 Margin="0,-5,0,0"
 Text="{TemplateBinding CurrentDate}"/>
</StackPanel>

1. Locate the file KioskBannerStyle.xaml in the Kiosk workstation folder
Vista\VistaKiosk\Config\Skins\Type1\VistaNew\Base\ControlStyles.

2. Save a copy of the file in the folder \User\ControlStyles.

3. Edit the file so that it looks like this:

<StackPanel Grid.Column="1" HorizontalAlignment="Left">
 <TextBlock
 FontSize="25"
 Foreground="{TemplateBinding Foreground}"
 Text="{TemplateBinding CurrentTime}"
 HorizontalAlignment="Right"/>
 <TextBlock
 Foreground="{TemplateBinding Foreground}"
 FontSize="15"
 HorizontalAlignment="Right"
 Margin="0,-5,0,0"
 Text="{TemplateBinding CurrentDate}"/>
</StackPanel>
<vkv:AdminModeButton Grid.Column="2"
 IconImageSource="{TemplateBinding BannerImageSource}"
 Style="{StaticResource AdminModeButtonStyle}"
 Stylus.IsPressAndHoldEnabled="False"/>

4. Restart the application, and the Kiosk banner will look like this:

CUSTOMISING VALUE CONVERTERS 11

Customising value converters
In addition to customising the look of visual elements through standard XAML notation, there is also a
collection of custom value converters that can be used. These converters can manipulate values or visual
elements to avoid complex expressions, and simplify presentation scenarios.

1. To use one or more of the custom value converters, add the following namespace to the top of the XAML
file being edited.

xmlns:vkv=http://schemas.vista.co.nz/ui/visualisation

2. Declare the required converter type to use.

<vkv:StringToUpperConverter x:Key="StringToUpperConverter"/>

3. Use the converter to perform a type conversion between the source (Title) and target (Text) values.

Text="{Binding Path=Title, Converter={StaticResource StringToUpperConverter}}"

CUSTOMISING VALUE CONVERTERS 12

Converters - reference information

Converter name Description

BoolToBrushConverter Converts a Boolean value to a brush resource value.
Returns the application resource brush identified by the
PositiveBrushKey value if a Boolean value is not supplied, or
if the supplied value is ‘true’. Otherwise it returns the
application resource brush identified by the
NegativeBrushKey.

BoolToCollapsedVisibilityCo

nverter
Converts a Boolean value to a visibility value.
Returns Visible if a Boolean value is not supplied or if the
supplied value is 'true'. Otherwise it returns Collapsed.

BoolToHiddenVisibilityConve

rter
Converts a Boolean value to a visibility value.
Returns Visible if a Boolean value is not supplied or if the
supplied value 'true'. Otherwise it returns Hidden.

CollectionCountToVisibility

Converter
Converts a collection item count value to a visibility value.
Returns Visible if a collection is not supplied or if the item count
of the supplied value is greater than zero. Otherwise it returns
Collapsed.

DateTimeToLongDateConverter Converts a date–time value to the long date format string. For
example: Thursday, 7th Nov 2013.

DateTimeToMediumDateConvert

er
Converts a date–time value to the medium date format string.
For example: Thu 7 Nov.

DateTimeToTimeConverter Converts the time part of a date to the 12-hour string format.

DateTimeToTimePeriodConvert

er
Converts the time period part of the date to the time period
designator string format. For example: AM.

DecimalToCurrencyConverter Converts a decimal value to the configured application currency
format.
Returns an empty string if the value supplied is not of decimal
type.

ImageSourceToFillConverter Converts an image source value to a media stretch value.
Assesses the image dimensions in reference to the image
container to determine an appropriate stretch mode that will
scale the image for optimal presentation.
This converter has been developed for use with tile templates,
although it can be applied to other use cases if required.

ImageSourceToVisibilityConv

erter
Converts the supplied image source value to a visibility value.
Returns Visible if the ImageSource has a value. Otherwise it
returns Collapsed.

ItemsControlSeparatorVisibi

lityConverter
Determines the visibility of a separator element used in an
item's control based on the position of the item in a source
collection.
It is assumed that the separator is visible unless it is
participating in the layout for the first item in the parent
collection.
Use the InvisibilityMode property to determine whether
the separator is collapsed or hidden when not visible.

RemainingShowTimesToRunsCon

verter
Converts the number of show times remaining for a session to a
Run collection. If the value is less than one, an empty string is
returned.

INCREASING AND DECREASING THE VISUAL SCALE OF KIOSK 13

SessionDateToDayConverter Converts a session date to its day representation.

SessionStateToDescriptionCo

nverter
Converts the session state to a string.

SessionsToFirstAvailableCon

verter
Converts a collection of type ScheduledFilmDay to a collection
of type Run.
This converter determines the first session available across the
available scheduled Kiosk film days.

SessionsToRunsConverter Converts a collection of type ScheduledFilmDay to a collection
of type Run.
This converter determines the first three sessions available
across the scheduled Kiosk film days.

SessionTextBlockToWidthConv

erter
Converts a text block to a width that will accommodate its
content in a tab control.

StringToUpperConverter Converts the supplied value to an upper case string, or returns
an empty string if the value supplied cannot be converted to a
string.

StringToVisibilityConverter Converts the supplied value to a visibility value.
Returns Visible if the string has a value, otherwise it returns
Collapsed.

TabToEqualWidthConverter Converts a tab width to a size that will be equal for all tabs
contained within a tab control.

Increasing and decreasing the visual scale of Kiosk
If required, enhance the usability of the Kiosk screen by adjusting its visual scale. In portrait mode, decreasing
the scale can be useful when the physical screen is too big for users to comfortably operate. In landscape
mode, increasing the scale can allow Kiosk to fill more of the screen.

1. Open the Kiosk.ini file in Notepad or a similar text editor.

ProgramData\Vista\VistaKiosk\Config\Kiosk.ini

2. Locate the setting DisplayScalePercentage, and increase or decrease the value as needed.

This determines the scale of your Kiosk display as a percentage of Kiosk's default size (100). The minimum
allowed value is 70.

Customising the idle screen when Kiosk is scaled down

If scaled below 100% in portrait mode, Kiosk displays an image behind the main interface, filling the
background. When the screen is idle, only the background image is visible. A small icon and message prompts
users to touch the screen to activate Kiosk. You can customise these elements.

1. To change the background image, locate the folder
ProgramData\Vista\VistaKiosk\Config\Skins\Type1\User.

2. Save your image in this folder with the name ScaledDown_Wallpaper.png.

3. To change the hand icon on the idle screen, save your image in the same folder with the name
touch_big.png.

4. To add your own prompt text, locate the folder
ProgramData\Vista\VistaKiosk\Config\Language.

POSITIONING THE SECTIONS OF THE KIOSK SKIN 14

5. Open the file INTENG_KC.XML (or the file for the language specified in the Kiosk.ini setting
Language1).

6. Locate the node <FORM NAME="Common">.

7. Under this node, add the following text, entering your own prompt text as the value:

<CONTROL CODE="UnlockIdleKiosk" NAME="" VALUE="Your prompt message when kiosk is

idle" LENGTH="0" TRANSLATED="TRUE" />

Positioning the sections of the Kiosk skin
When in portrait mode, Kiosk's on-screen content is divided into three horizontal panels. By default, the panel
containing sections used for transactions is positioned in the centre. You can reposition these panels to suit
your setup. For example, if your Kiosks are positioned higher on a wall, having the transactional section in the
lower part of the screen increases accessibility.

1. Open the CfgSkin.xml file in your customised skin folder.

For example:
C:\ProgramData\Vista\VistaKiosk\config\Skins\Type1\...\CfgSkin.xml

2. Locate the General property list:

Skin > Screens > General

3. Edit the numerical values for the top, centre, and bottom panels.

The panel given the value of 0 will appear at the top, while the panel given the value of 2 will appear at the
bottom.

For example:

<prop name="TOPPANEL.ROWINDEX" value="0" />
<prop name="CENTREPANEL.ROWINDEX" value="2" />
<prop name="BOTTOMPANEL.ROWINDEX" value="1" />

This configuration positions the panel used for transactions in the lower third of the screen.

Customising the text field size for card numbers
When your patrons manually enter their booking reference number or Loyalty card number into Kiosk, the
text entry field should fit the full number on a single line. If your business uses longer card numbers, adjust the
width and height of the text field on both the Booking Pickup and Booking Reference pages to achieve this.

1. Open the CfgSkin.xml file in your customised skin folder.

For example:
C:\ProgramData\Vista\VistaKiosk\config\Skins\Type1\...\CfgSkin.xml

2. Locate the KeyboardEntry property list:

CUSTOMISING YOUR LOYALTY CARD SWIPE IMAGE 15

Skin > Screens > General > Controls > KeyboardEntry

3. Edit the values for width and height.

See the below XML as an indication of where to find these properties:

<prop name="ID" value="SKIN" />
 <proplist>
 <prop name="ID" value="Screens" />
 <proplist>
 <prop name="ID" value="GENERAL" />
 ...
 <proplist>
 <prop name="ID" value="Controls" />
 ...
 <proplist>
 <prop name="ID" value="KeyboardEntry" />
 <prop name="FONTCOLOR" value="68,62,59" />
 <prop name="FONTSIZE" value="30px" />
 <prop name="LEFT" value="615" />
 <prop name="TOP" value="340" />
 <prop name="WIDTH" value="300" />
 <prop name="HEIGHT" value="56" />
 </proplist>

4. Use your own background image (Keyboard_entry.png) to match the size of the text entry field.

Customising your Loyalty card swipe image
Follow the steps below to customise the Loyalty card swipe image on Kiosk.

1. Locate your customised copy of LoyaltyScanCardViewTemplate.xaml, or create a copy of the
original version and save it in the below folder.

C:\VistaInstall\Downloads\Kiosk_<version>\VistaKiosk\VistaKiosk\Config\S
kins\Type1\VistaNew\User\Templates

2. Within the file, locate the template that has LoyaltyScanCardTemplate as the Key.

3. At the end of this template, under the "Main area" comment, locate the line for the first image.

4. Delete the current properties of AnimatedSource.

5. Set the mark-up extension to vkv:CustomisableImage.

6. Decide whether you want to customise this image by specifying a setting name or a file name, and follow
the appopriate steps below.

Specify the setting name:

1. Enter SettingName and set the value to Loyalty_Anim_Swipe_Filename.

CUSTOMISING YOUR LOYALTY CARD SWIPE IMAGE 16

This tells the image object which Kiosk.ini setting determines the image to be used.

2. Enter DefaultImageName and set the value to the file name of an image.

This default image will be used if the image specified in the Kiosk.ini setting cannot be found. It can
match the one specified in the Kiosk.ini setting.

For example: AnimatedSource="{vkv:CustomisableImage
SettingName=Loyalty_Anim_Swipe_Filename, DefaultImageName=Anim_Swipe_Insert}"

3. Save the file.

Specify the file name:

1. Enter IsUsingFileName=True

This tells the image object to use a file name rather than a Kiosk.ini setting.

2. Enter ImageName and set the value to the file name of the image to be used.

Note: This image must be located in VistaKiosk\bin\Config\Skins\Type1 in either the
VistaNew or User folder, according to the Kiosk.ini setting SkinSubType.

For example: AnimatedSource="{vkv:CustomisableImage IsUsingFilename=True,
ImageName=Anim_Swipe_Insert}"

3. Save the file.

We've converted several Kiosk screens from Windows Forms to WPF (Windows Presentation Foundation), a
framework that allows for greater flexibility in the user interface. If you've customised any of the following
Kiosk screens using the CfgSkin.xml file in a release earlier than 5.0.3, and are upgrading to 5.0.3 (or later),
you'll need to replicate your customisations by modifying certain XAML files.

Screens affected by this change (as named in CfgSkin.xml):

CUSTOMISING YOUR LOYALTY CARD SWIPE IMAGE 17

 ENTERBOOKINGREF

 ENTERCCV

 ENTERPAYMENTPASSWORD

 ENTERPIN

 ENTERZIP

 ERRORUSERINFO

 INSERTVOUCHERS

 PAY

 PICKUP

 PICKUPPROCESSING

 PRINT

 PROMO

 TAXINFORMATIONCOLLECTION

 TAXNAME

 TAXNUMBER

 18

INDEX 18

Index
C

Converters - reference information • 12

Copyright notice • 2

Customising colours • 5

Customising control styles • 9

Customising fonts • 5

Customising templates • 6

Customising the idle screen when Kiosk is scaled
down • 13

Customising the text field size for card numbers •
14

Customising value converters • 11

Customising your Loyalty card swipe image • 15

I

Increasing and decreasing the visual scale of Kiosk
• 13

P

Positioning the sections of the Kiosk skin • 14

